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We show that  with the applicat ion of a L a p l a e e - C a r s o n  integral  t r a n s f o r m  the p rob lem con-  
cerning the development  of a gradient  flow of a viscoplas t ic  medium between para l le l  walls 
reduces  to the solution of a s y s t e m  of functional equations.  

It  is a known fact  that the s tudy of the nonsta t ionary  flow of an i m c o m p r e s s i b l e  v iscoplas t ic  medium in 
a two-dimensional  channel ( - h  ___ y ___ h) under the influence of a p r e s s u r e  gradient  may be reduced to the 
solution of the following p rob lem [1] : 
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where  the a b s c i s s a  is taken along the flow direct ion,  the ordinate is perpendicu la r  to the channel wal ls ,  and 
the z -ax is  is perpendicular  to the flow direct ion;  Eqs.  (1) desc r ibe  the theologica l  behavior  of a viscoplast ic  
medium, Eqs.  (2) and (3) desc r ibe  the motion of a continuous medium between para l le l  wai ls ;  conditions (4) 
express  the "no s l ip"  condition of the medium at the nonmoving r igid wal ls ;  re la t ions  (5) a r e  the conditions 
for  the exis tence  of a zone of quas i - r ig id  motion ("kernel") ,  the coordinate  of whose boundary is desc r ibab le  
by the equation y = Y0(t). Equation (6) gives the initial veloci ty dis tr ibut ion of the med ium.  

F r o m  Eqs.  (2) and (3) it follows that  Op/O x = ~p/Ox (t). In this case ,  taking into account Eqs.  (5) for  
the velocity of the quas i - r ig id  zone, we read i ly  obtain 

dv o Op T o 
O = (7) 

dt Ox Yo (t) 

A natural  r equ i r emen t  in this p rob lem is the condition of continuity of the velocRy of the medium and of the 
tangential  shea r  s t r e s s e s  at the boundary separa t ing  the zones of viscous flow and quas i - r ig id  motion: 

v ~ ( + y o ( t  ) +O, t )=vo( t  ), T(+Yo( t )~-O,  t )=-T-%.  (81 
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Owing to the symmetry of the problem defined by Eqs. (i)-(8) it is sufficient to obtain its solution in the 

domain {y, t: Y0 (t) < y < h, t > 0}. Upon introducing the dimensionless quantities: time ~ = (/z/ph2)t, the 

coordinate 7] = y/h, the velocity u = (~l/p0b2)Vx, and the tangential stress T = l/P0 h [~ + ~0], we can write 

the problem (1)-(8) in the two equivalent forms: 
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T o is the dimensionless  tangential s t r e s s  distribution in the "main body" of the flow. In the problem defined 
by Eqs.  (9)-(14) the dimensionless  pa r ame te r  s = ~-0//P0 h charac te r i zes  the viscoplast ici ty of the body; when 
s = 0 the flow becomes that of a Newtonian liquid. 

It should be noted that the Eqs.  (9) are  valid only in the region of viscous flow. 

The problem defined by Eqs.  (9)-(14) in the u - represen ta t ion  was considered for  the f i r s t  t ime, ap-  
parently,  in [1], wherein existence and uniqueness theorems concerning the solution were  proved and an 
asymptotic  solution of the problem was obtained for  smal l  ~ for p(~) = - 1 ,  %(0) = 0, 6(0) = 1. In the 
general  case ,  the determinat ion of the boundary 6(~) separat ing the zones was reduced to the solution of 
two independent functional equations. A s imi lar  problem for  :more general  conditions on the boundary of 
the main body of the flow was considered in [2]. The resul ts  given in [1] and in [2] for  identical initial and 
boundary conditions (including the conditions on the unknown boundary) are  coincident. 

A survey  is given in [3], which bears  on the study of nonstat ionary flows of viscoplastic media, in 
which the cur ren t  state of the problem is d iscussed.  In [4], to solve the problem concerning the develop- 
ment of the motion of a viscoplast ic  medium f rom a state of res t  under the action of an instantaneously 
applied p re s su re  gradient,  constant in t ime, in a two-dimensional  channel, i . e . ,  in solving the problem 
for  the case 

p ( ~ ) = - - l ,  6(0)= 1, (15) 

the one-sided Laplace transform with respect to the variable ~ was used. However in [4], in the formula- 

tion of the problem in the T-representation, errors were made which lead to invalid results in the final 

calculation. In the present paper we correct these errors and show that the application of the Laplace 

-Carson integral transform to the problem defined by Eqs. (9)-(13) and (15) reduces it to, the solution of a 
sys tem of functional equations. 
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It  should be noted that  ff the conditions (15) hold, the influence of the initial conditions (14) on the 
solution of p rob lem (9)-(15) is unimportant  in the closed region D = {~, ~ : 6(0 -< ~ -< 1.0 _< ~ _< ~-}, where  
~- is a posi t ive  constant  and the point (1; 0) is excluded. The solution of the p rob lem (9)-(13), (15) can be 
const ructed by using the method of extending the initial conditions [5], the e s sence  of which cons is t s  in the 
fact that in some  region,  containing the region D, a t he rma l  sou rce  densi ty  dis tr ibut ion can be chosen so 
that  the boundary conditions of the p rob l em  a re  sa t is f ied .  This method is equivalent,  in a ce r ta in  sense ,  
to the ass ignment  of a r b i t r a r y  boundary (or initial) conditions for  const ruct ing the solution of the heat  con-  
duction equation in the domain D, or  some  extension of it, such that the resu l t ing  solution will sa t i s fy  the 
conditions of the initial p rob lem (9)-(13), (15). We examine  below two poss ib le  ways of cons t ruc t ing  the 
solution to this p rob l em.  

We :may seek  the solution of the p rob lem (9)-(13), (15) in the c lass  of solutions of the heat conduction 
equation for  the ha l f s t r ip  {0 < ~ < co, 0 < ~ <~-} with an a r b i t r a r y  initial condition g0(W). To be specif ic ,  
we cons ider  the T- represen ta t ion  of the p rob lem and apply to the Eqs .  (9) and (10) the one-s ided  Laplace 
- C a r s o n  t r a n s f o r m ,  with p a r a m e t e r  p, in the var iab le  ~ ; we read i ly  obtain 

pT--P~POI) = T", (16) 

T' (1, p) = - -  l, (17) 

where  the p r i m e s  indicate different ia t ion with r e spec t  to the va r i ab le  ~.  A solution of Eq. (16), which 
sa t i s f i es  the condition (17) and r e m a i n s  bounded as ~ --- co, has the f o r m  

T(xl, p)= exp (V--p-(I--~I)), __ _e_V?n e~C-pzdz e_VT, rpe~(r)dr. (18) 

I 1 

However  the express ion  (18) does not sa t i s fy  the conditions imposed on the function r ep re sen t ed  by the 
L a p l a c e - C a r s o n  integral  [7]. 

The second way of solving the p rob lem (9)-(13), (15) consis ts  in a r b i t r a r i l y  ass igning a boundary 
condition on some  line ~? = a ,  where  a is a bounded constant .  Thus the solution is cons t ruc ted  in the region 
{a < ~ < 1, 0 < $ < ~-}, if a < 1; the initial conditions, by vir tue  of the r e m a r k s  made above, can be taken 
to be homogeneous .  On the line ~? = 0, let there  by given the a r b i t r a r y  boundary condition 

T(0, ~) = f(~). (19) 

By taking the L a p l a c e - C a r s o n  t r a n s f o r m  in the va r i ab le  ~ of the Eqs.  (9), (10), with Eqs.  (15) and (19) 
taken into account,  we obtain 

7" - -  pT  = 0; T ( 0 ,  p) = f-(p), 'T' (1, p) = - -  1. ( 2 0 )  

The solution of p rob lem (20) has the f o r m  

T(n, P ) =  [(P) chVp-(1--~l)  
chg-P- 

Taking the inve r se  t r a n s f o r m  [6], we read i ly  obtain 
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where  

~l(g, x ) = 2  Z exp - - a  2 k +  x s i n~ (2k+  1) g; 
k ~ 0  
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The sys tem of functional equations for determining 8(~ ) and f(} ) has the fo rm 

o) do_-.o. S ~ + S ~ 
0 u 

o 

+ ~ ,~  a~= 6(~) 
0 

We can t r y  to obtain analogous solutions and functional sys tems  for  an a rb i t r a r i ly  given boundary 
condition of the fo rm 

T(1, ~)=fl(~) o: 07"(0,~)=f~(~). 
&l 

It should be noted that the L a p l a c e - C a r s o n  integral t r ans fo rm,  owing to its l ineari ty,  is not available 
for  handling the conditions on the unknown boundary, whence it follows that to determine the lat ter  it 
becomes n e c e s s a r y  to solve a functional equation. 

The e r r o r  in [4] consists  in the fact  that in using the second of the schemes considered above sa t i s -  
faction of the condition ~(0, t) = 0 was required  instead of the condition (19). This condition, in actuality,  
must  be satisfied for  the zone of quas i - r ig id  :motion and has no relat ionship to the zone of viscous flow 
since the line ~ = 0 is not a boundary of the viscous flow zone. It would seem that one could a r r ive  at the 
resul ts  given in [4] by taking into account the nature of the tangential shear  s t r e s s  distribution in the two- 
dimensional channel, keeping only an ant i symmetr ie  function of ~ in the solution. However even this 
argument  falls short  since the nature of the tangential s t r e s s  distribution in the viscous zone of the lower 
half of the channel is ensured with a suitable choice of the constants of integration. 

In addition, in construct ing the solution in [4] no use was :made of Eqs.  (12) and (13), this being a con-  
sequence of considering the motion of the quas i - r ig id  "core"  as the entire :motion. The t rue asymptotic 
nature of the behavior  of 6(}) as } - -  ~o :may be explained by the fact  that we have considered a flow asympto-  
t ical ly tending to a s ta t ionary  flow, and fo r  a s ta t ionary  flow of a viscoplast ic  medium between paral lel  
walls the equations for  the tangential s t r e s se s  in the zone of viscous flow and in the zone of quas i - r ig id  
motion coincide.  
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half-width of channel; 
shear  s t r e s s ;  
dynamic viscos i ty  coefficient;  
l imit  shear  s t r e s s ;  
veloci ty components of :medium along corresponding coordinate axes;  
densi ty of medium; 
p r e s s u r e ;  
velocity of quasi-rigid zone; 
time; 
pressure drop per unit length; 
dimensionless time; 
dimensionless transverse coordinate; 
dimensionless coordinate of quasi-rigid zone; 
dimensionless velocity of :medium; 
dimensionless  shear  s t r e s s ;  
plast ici ty pa ramete r  ; 
d imensionless  p r e s s u r e  gradient.  
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